jsbn.js
/* * Copyright (c) 2003-2005 Tom Wu * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. * * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * In addition, the following condition applies: * * All redistributions must retain an intact copy of this copyright notice * and disclaimer. */// Basic JavaScript BN library - subset useful for RSA encryption.// Bits per digitvar dbits;// JavaScript engine analysisvar canary = 0xdeadbeefcafe;var j_lm = ((canary&0xffffff)==0xefcafe);// (public) Constructorfunction BigInteger(a,b,c) { if(a != null) if("number" == typeof a) this.fromNumber(a,b,c); else if(b == null && "string" != typeof a) this.fromString(a,256); else this.fromString(a,b);}// return new, unset BigIntegerfunction nbi() { return new BigInteger(null); }// am: Compute w_j += (x*this_i), propagate carries,// c is initial carry, returns final carry.// c < 3*dvalue, x < 2*dvalue, this_i < dvalue// We need to select the fastest one that works in this environment.// am1: use a single mult and divide to get the high bits,// max digit bits should be 26 because// max internal value = 2*dvalue^2-2*dvalue (< 2^53)function am1(i,x,w,j,c,n) { while(--n >= 0) { var v = x*this[i++]+w[j]+c; c = Math.floor(v/0x4000000); w[j++] = v&0x3ffffff; } return c;}// am2 avoids a big mult-and-extract completely.// Max digit bits should be <= 30 because we do bitwise ops// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)function am2(i,x,w,j,c,n) { var xl = x&0x7fff, xh = x>>15; while(--n >= 0) { var l = this[i]&0x7fff; var h = this[i++]>>15; var m = xh*l+h*xl; l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff); c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); w[j++] = l&0x3fffffff; } return c;}// Alternately, set max digit bits to 28 since some// browsers slow down when dealing with 32-bit numbers.function am3(i,x,w,j,c,n) { var xl = x&0x3fff, xh = x>>14; while(--n >= 0) { var l = this[i]&0x3fff; var h = this[i++]>>14; var m = xh*l+h*xl; l = xl*l+((m&0x3fff)<<14)+w[j]+c; c = (l>>28)+(m>>14)+xh*h; w[j++] = l&0xfffffff; } return c;}if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) { BigInteger.prototype.am = am2; dbits = 30;}else if(j_lm && (navigator.appName != "Netscape")) { BigInteger.prototype.am = am1; dbits = 26;}else { // Mozilla/Netscape seems to prefer am3 BigInteger.prototype.am = am3; dbits = 28;}BigInteger.prototype.DB = dbits;BigInteger.prototype.DM = ((1<= 0; --i) r[i] = this[i]; r.t = this.t; r.s = this.s;}// (protected) set from integer value x, -DV <= x < DVfunction bnpFromInt(x) { this.t = 1; this.s = (x<0)?-1:0; if(x > 0) this[0] = x; else if(x < -1) this[0] = x+DV; else this.t = 0;}// return bigint initialized to valuefunction nbv(i) { var r = nbi(); r.fromInt(i); return r; }// (protected) set from string and radixfunction bnpFromString(s,b) { var k; if(b == 16) k = 4; else if(b == 8) k = 3; else if(b == 256) k = 8; // byte array else if(b == 2) k = 1; else if(b == 32) k = 5; else if(b == 4) k = 2; else { this.fromRadix(s,b); return; } this.t = 0; this.s = 0; var i = s.length, mi = false, sh = 0; while(--i >= 0) { var x = (k==8)?s.charCodeAt(i)&0xff:intAt(s,i); /** MODIFIED **/ if(x < 0) { if(s.charAt(i) == "-") mi = true; continue; } mi = false; if(sh == 0) this[this.t++] = x; else if(sh+k > this.DB) { this[this.t-1] |= (x&((1<<(this.DB-sh))-1))< >(this.DB-sh)); } else this[this.t-1] |= x< = this.DB) sh -= this.DB; } if(k == 8 && (s[0]&0x80) != 0) { this.s = -1; if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)< 0 && this[this.t-1] == c) --this.t;}// (public) return string representation in given radixfunction bnToString(b) { if(this.s < 0) return "-"+this.negate().toString(b); var k; if(b == 16) k = 4; else if(b == 8) k = 3; else if(b == 256) k = 8; // byte array /** MODIFIED **/ else if(b == 2) k = 1; else if(b == 32) k = 5; else if(b == 4) k = 2; else return this.toRadix(b); var km = (1< 0) { if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = (k==8)?String.fromCharCode(d):int2char(d); } /** MODIFIED **/ while(i >= 0) { if(p < k) { d = (this[i]&((1< <<(k-p); d |= this[--i]>>(p+=this.DB-k); } else { d = (this[i]>>(p-=k))&km; if(p <= 0) { p += this.DB; --i; } } if(d > 0) m = true; if(m) r += (k==8)?String.fromCharCode(d):int2char(d); /** MODIFIED **/ } } return m?r:"0";}// (public) -thisfunction bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }// (public) |this|function bnAbs() { return (this.s<0)?this.negate():this; }// (public) return + if this > a, - if this < a, 0 if equalfunction bnCompareTo(a) { var r = this.s-a.s; if(r != 0) return r; var i = this.t; r = i-a.t; if(r != 0) return r; while(--i >= 0) if((r=this[i]-a[i]) != 0) return r; return 0;}// returns bit length of the integer xfunction nbits(x) { var r = 1, t; if((t=x>>>16) != 0) { x = t; r += 16; } if((t=x>>8) != 0) { x = t; r += 8; } if((t=x>>4) != 0) { x = t; r += 4; } if((t=x>>2) != 0) { x = t; r += 2; } if((t=x>>1) != 0) { x = t; r += 1; } return r;}// (public) return the number of bits in "this"function bnBitLength() { if(this.t <= 0) return 0; return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));}// (protected) r = this << n*DBfunction bnpDLShiftTo(n,r) { var i; for(i = this.t-1; i >= 0; --i) r[i+n] = this[i]; for(i = n-1; i >= 0; --i) r[i] = 0; r.t = this.t+n; r.s = this.s;}// (protected) r = this >> n*DBfunction bnpDRShiftTo(n,r) { for(var i = n; i < this.t; ++i) r[i-n] = this[i]; r.t = Math.max(this.t-n,0); r.s = this.s;}// (protected) r = this << nfunction bnpLShiftTo(n,r) { var bs = n%this.DB; var cbs = this.DB-bs; var bm = (1< = 0; --i) { r[i+ds+1] = (this[i]>>cbs)|c; c = (this[i]&bm)< = 0; --i) r[i] = 0; r[ds] = c; r.t = this.t+ds+1; r.s = this.s; r.clamp();}// (protected) r = this >> nfunction bnpRShiftTo(n,r) { r.s = this.s; var ds = Math.floor(n/this.DB); if(ds >= this.t) { r.t = 0; return; } var bs = n%this.DB; var cbs = this.DB-bs; var bm = (1< >bs; for(var i = ds+1; i < this.t; ++i) { r[i-ds-1] |= (this[i]&bm)< >bs; } if(bs > 0) r[this.t-ds-1] |= (this.s&bm)< >= this.DB; } if(a.t < this.t) { c -= a.s; while(i < this.t) { c += this[i]; r[i++] = c&this.DM; c >>= this.DB; } c += this.s; } else { c += this.s; while(i < a.t) { c -= a[i]; r[i++] = c&this.DM; c >>= this.DB; } c -= a.s; } r.s = (c<0)?-1:0; if(c < -1) r[i++] = this.DV+c; else if(c > 0) r[i++] = c; r.t = i; r.clamp();}// (protected) r = this * a, r != this,a (HAC 14.12)// "this" should be the larger one if appropriate.function bnpMultiplyTo(a,r) { var x = this.abs(), y = a.abs(); var i = x.t; r.t = i+y.t; while(--i >= 0) r[i] = 0; for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t); r.s = 0; r.clamp(); if(this.s != a.s) BigInteger.ZERO.subTo(r,r);}// (protected) r = this^2, r != this (HAC 14.16)function bnpSquareTo(r) { var x = this.abs(); var i = r.t = 2*x.t; while(--i >= 0) r[i] = 0; for(i = 0; i < x.t-1; ++i) { var c = x.am(i,x[i],r,2*i,0,1); if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) { r[i+x.t] -= x.DV; r[i+x.t+1] = 1; } } if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1); r.s = 0; r.clamp();}// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)// r != q, this != m. q or r may be null.function bnpDivRemTo(m,q,r) { var pm = m.abs(); if(pm.t <= 0) return; var pt = this.abs(); if(pt.t < pm.t) { if(q != null) q.fromInt(0); if(r != null) this.copyTo(r); return; } if(r == null) r = nbi(); var y = nbi(), ts = this.s, ms = m.s; var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } else { pm.copyTo(y); pt.copyTo(r); } var ys = y.t; var y0 = y[ys-1]; if(y0 == 0) return; var yt = y0*(1< 1)?y[ys-2]>>this.F2:0); var d1 = this.FV/yt, d2 = (1< = 0) { r[r.t++] = 1; r.subTo(t,r); } BigInteger.ONE.dlShiftTo(ys,t); t.subTo(y,y); // "negative" y so we can replace sub with am later while(y.t < ys) y[y.t++] = 0; while(--j >= 0) { // Estimate quotient digit var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2); if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out y.dlShiftTo(j,t); r.subTo(t,r); while(r[i] < --qd) r.subTo(t,r); } } if(q != null) { r.drShiftTo(ys,q); if(ts != ms) BigInteger.ZERO.subTo(q,q); } r.t = ys; r.clamp(); if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder if(ts < 0) BigInteger.ZERO.subTo(r,r);}// (public) this mod afunction bnMod(a) { var r = nbi(); this.abs().divRemTo(a,null,r); if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); return r;}// Modular reduction using "classic" algorithmfunction Classic(m) { this.m = m; }function cConvert(x) { if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); else return x;}function cRevert(x) { return x; }function cReduce(x) { x.divRemTo(this.m,null,x); }function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }Classic.prototype.convert = cConvert;Classic.prototype.revert = cRevert;Classic.prototype.reduce = cReduce;Classic.prototype.mulTo = cMulTo;Classic.prototype.sqrTo = cSqrTo;// (protected) return "-1/this % 2^DB"; useful for Mont. reduction// justification:// xy == 1 (mod m)// xy = 1+km// xy(2-xy) = (1+km)(1-km)// x[y(2-xy)] = 1-k^2m^2// x[y(2-xy)] == 1 (mod m^2)// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.// JS multiply "overflows" differently from C/C++, so care is needed here.function bnpInvDigit() { if(this.t < 1) return 0; var x = this[0]; if((x&1) == 0) return 0; var y = x&3; // y == 1/x mod 2^2 y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 // last step - calculate inverse mod DV directly; // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits // we really want the negative inverse, and -DV < y < DV return (y>0)?this.DV-y:-y;}// Montgomery reductionfunction Montgomery(m) { this.m = m; this.mp = m.invDigit(); this.mpl = this.mp&0x7fff; this.mph = this.mp>>15; this.um = (1<<(m.DB-15))-1; this.mt2 = 2*m.t;}// xR mod mfunction montConvert(x) { var r = nbi(); x.abs().dlShiftTo(this.m.t,r); r.divRemTo(this.m,null,r); if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); return r;}// x/R mod mfunction montRevert(x) { var r = nbi(); x.copyTo(r); this.reduce(r); return r;}// x = x/R mod m (HAC 14.32)function montReduce(x) { while(x.t <= this.mt2) // pad x so am has enough room later x[x.t++] = 0; for(var i = 0; i < this.m.t; ++i) { // faster way of calculating u0 = x[i]*mp mod DV var j = x[i]&0x7fff; var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM; // use am to combine the multiply-shift-add into one call j = i+this.m.t; x[j] += this.m.am(0,u0,x,i,0,this.m.t); // propagate carry while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; } } x.clamp(); x.drShiftTo(this.m.t,x); if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);}// r = "x^2/R mod m"; x != rfunction montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }// r = "xy/R mod m"; x,y != rfunction montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }Montgomery.prototype.convert = montConvert;Montgomery.prototype.revert = montRevert;Montgomery.prototype.reduce = montReduce;Montgomery.prototype.mulTo = montMulTo;Montgomery.prototype.sqrTo = montSqrTo;// (protected) true iff this is evenfunction bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)function bnpExp(e,z) { if(e > 0xffffffff || e < 1) return BigInteger.ONE; var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; g.copyTo(r); while(--i >= 0) { z.sqrTo(r,r2); if((e&(1< 0) z.mulTo(r2,g,r); else { var t = r; r = r2; r2 = t; } } return z.revert(r);}// (public) this^e % m, 0 <= e < 2^32function bnModPowInt(e,m) { var z; if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); return this.exp(e,z);}// protectedBigInteger.prototype.copyTo = bnpCopyTo;BigInteger.prototype.fromInt = bnpFromInt;BigInteger.prototype.fromString = bnpFromString;BigInteger.prototype.clamp = bnpClamp;BigInteger.prototype.dlShiftTo = bnpDLShiftTo;BigInteger.prototype.drShiftTo = bnpDRShiftTo;BigInteger.prototype.lShiftTo = bnpLShiftTo;BigInteger.prototype.rShiftTo = bnpRShiftTo;BigInteger.prototype.subTo = bnpSubTo;BigInteger.prototype.multiplyTo = bnpMultiplyTo;BigInteger.prototype.squareTo = bnpSquareTo;BigInteger.prototype.divRemTo = bnpDivRemTo;BigInteger.prototype.invDigit = bnpInvDigit;BigInteger.prototype.isEven = bnpIsEven;BigInteger.prototype.exp = bnpExp;// publicBigInteger.prototype.toString = bnToString;BigInteger.prototype.negate = bnNegate;BigInteger.prototype.abs = bnAbs;BigInteger.prototype.compareTo = bnCompareTo;BigInteger.prototype.bitLength = bnBitLength;BigInteger.prototype.mod = bnMod;BigInteger.prototype.modPowInt = bnModPowInt;// "constants"BigInteger.ZERO = nbv(0);BigInteger.ONE = nbv(1);
sha1.js
/** * * Secure Hash Algorithm (SHA1) * http://www.webtoolkit.info/ * **/function SHA1(msg) { function rotate_left(n,s) { var t4 = ( n<>>(32-s)); return t4; }; function lsb_hex(val) { var str=""; var i; var vh; var vl; for( i=0; i<=6; i+=2 ) { vh = (val>>>(i*4+4))&0x0f; vl = (val>>>(i*4))&0x0f; str += vh.toString(16) + vl.toString(16); } return str; }; function cvt_hex(val) { var str=""; var i; var v; for( i=7; i>=0; i-- ) { v = (val>>>(i*4))&0x0f; str += v.toString(16); } return str; }; function Utf8Encode(string) { string = string.replace(/\r\n/g,"\n"); var utftext = ""; for (var n = 0; n < string.length; n++) { var c = string.charCodeAt(n); if (c < 128) { utftext += String.fromCharCode(c); } else if((c > 127) && (c < 2048)) { utftext += String.fromCharCode((c >> 6) | 192); utftext += String.fromCharCode((c & 63) | 128); } else { utftext += String.fromCharCode((c >> 12) | 224); utftext += String.fromCharCode(((c >> 6) & 63) | 128); utftext += String.fromCharCode((c & 63) | 128); } } return utftext; }; var blockstart; var i, j; var W = new Array(80); var H0 = 0x67452301; var H1 = 0xEFCDAB89; var H2 = 0x98BADCFE; var H3 = 0x10325476; var H4 = 0xC3D2E1F0; var A, B, C, D, E; var temp; msg = Utf8Encode(msg); var msg_len = msg.length; var word_array = new Array(); for( i=0; i>>29 ); word_array.push( (msg_len<<3)&0x0ffffffff ); for ( blockstart=0; blockstart
rsa.js
/** * This is a specialized RSA library meant only to verify SHA1-based signatures. * It requires jsbn.js and sha1.js to work. */(function(globalObj){ // Define ASN.1 templates for the data structures used function seq() { return {type: 0x30, children: Array.prototype.slice.call(arguments)}; } function obj(id) { return {type: 0x06, content: id}; } function bitStr(contents) { return {type: 0x03, encapsulates: contents}; } function intResult(id) { return {type: 0x02, out: id}; } function octetResult(id) { return {type: 0x04, out: id}; } // See http://www.cryptopp.com/wiki/Keys_and_Formats#RSA_PublicKey // 2A 86 48 86 F7 0D 01 01 01 means 1.2.840.113549.1.1.1 var publicKeyTemplate = seq(seq(obj("\x2A\x86\x48\x86\xF7\x0D\x01\x01\x01"), {}), bitStr(seq(intResult("n"), intResult("e")))); // See http://tools.ietf.org/html/rfc3447#section-9.2 step 2 // 2B 0E 03 02 1A means 1.3.14.3.2.26 var signatureTemplate = seq(seq(obj("\x2B\x0E\x03\x02\x1A"), {}), octetResult("sha1")); /** * Reads ASN.1 data matching the template passed in. This will throw an * exception if the data format doesn't match the template. On success an * object containing result properties is returned. * * See http://luca.ntop.org/Teaching/Appunti/asn1.html for info on the format. */ function readASN1(data, templ) { var pos = 0; function next() { return data.charCodeAt(pos++); } function readLength() { var len = next(); if (len & 0x80) { var cnt = len & 0x7F; if (cnt > 2 || cnt == 0) throw "Unsupported length"; len = 0; for (var i = 0; i < cnt; i++) len += next() << (cnt - 1 - i) * 8; return len; } else return len; } function readNode(curTempl) { var type = next(); var len = readLength(); if ("type" in curTempl && curTempl.type != type) throw "Unexpected type"; if ("content" in curTempl && curTempl.content != data.substr(pos, len)) throw "Unexpected content"; if ("out" in curTempl) out[curTempl.out] = new BigInteger(data.substr(pos, len), 256); if ("children" in curTempl) { var i, end; for (i = 0, end = pos + len; pos < end; i++) { if (i >= curTempl.children.length) throw "Too many children"; readNode(curTempl.children[i]); } if (i < curTempl.children.length) throw "Too few children"; if (pos > end) throw "Children too large"; } else if ("encapsulates" in curTempl) { if (next() != 0) throw "Encapsulation expected"; readNode(curTempl.encapsulates); } else pos += len; } var out = {}; readNode(templ); if (pos != data.length) throw "Too much data"; return out; } /** * Reads a BER-encoded RSA public key. On success returns an object with the * properties n and e (the components of the key), otherwise null. */ function readPublicKey(key) { try { return readASN1(atob(key), publicKeyTemplate); } catch (e) { console.log("Invalid RSA public key: " + e); return null; } } /** * Checks whether the signature is valid for the given public key and data. */ function verifySignature(key, signature, data) { var keyData = readPublicKey(key); if (!keyData) return false; // We need the exponent as regular number keyData.e = parseInt(keyData.e.toString(16), 16); // Decrypt signature data using RSA algorithm var sigInt = new BigInteger(atob(signature), 256); var digest = sigInt.modPowInt(keyData.e, keyData.n).toString(256); try { var pos = 0; function next() { return digest.charCodeAt(pos++); } // Skip padding, see http://tools.ietf.org/html/rfc3447#section-9.2 step 5 if (next() != 1) throw "Wrong padding in signature digest"; while (next() == 255) {} if (digest.charCodeAt(pos - 1) != 0) throw "Wrong padding in signature digest"; // Rest is an ASN.1 structure, get the SHA1 hash from it and compare to // the real one var sha1 = readASN1(digest.substr(pos), signatureTemplate).sha1; var expected = new BigInteger(SHA1(data), 16); return (sha1.compareTo(expected) == 0); } catch (e) { console.log("Invalid encrypted signature: " + e); return false; } } // Export verifySignature function, everything else is private. globalObj.verifySignature = verifySignature;})(this);